(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0) → g(h(f(z0)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(g(z0)) → g(z0)
mark(h(z0)) → h(mark(z0))
Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
S tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2, c4
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(h(z0)) → c4(MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → a__f(mark(z0))
mark(g(z0)) → g(z0)
mark(h(z0)) → h(mark(z0))
a__f(z0) → g(h(f(z0)))
a__f(z0) → f(z0)
And the Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__F(x1)) = 0
POL(MARK(x1)) = [2]x1
POL(a__f(x1)) = [2]x1
POL(c2(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = [3]
POL(h(x1)) = [1] + x1
POL(mark(x1)) = [3]
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0) → g(h(f(z0)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(g(z0)) → g(z0)
mark(h(z0)) → h(mark(z0))
Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
S tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
K tuples:
MARK(h(z0)) → c4(MARK(z0))
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2, c4
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → a__f(mark(z0))
mark(g(z0)) → g(z0)
mark(h(z0)) → h(mark(z0))
a__f(z0) → g(h(f(z0)))
a__f(z0) → f(z0)
And the Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__F(x1)) = 0
POL(MARK(x1)) = x1
POL(a__f(x1)) = [4] + [2]x1
POL(c2(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(f(x1)) = [2] + x1
POL(g(x1)) = [3]
POL(h(x1)) = [3] + x1
POL(mark(x1)) = [4]x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0) → g(h(f(z0)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(g(z0)) → g(z0)
mark(h(z0)) → h(mark(z0))
Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
MARK(h(z0)) → c4(MARK(z0))
S tuples:none
K tuples:
MARK(h(z0)) → c4(MARK(z0))
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2, c4
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))